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Rock, snow and ice masses are often dislodged on steep slopes of mountainous 
regions. The masses, which typically are in the form of innumerable discrete blocks 
or granules, initially accelerate down the slope until the angle of inclination of the 
bed approaches the horizontal and bed friction eventually brings them to rest. The 
present paper describes an initial investigation which considers the idealized problem 
of a finite mass of material released from rest on a rough inclined plane. The granular 
mass is treated as a frictional Coulomb-like continuum with a Coulomb-like basal 
friction law. Depth-averaged equations of motion are derived ; they bear a superficial 
resemblance to the nonlinear shallow-water wave equations. Two similarity solutions 
are found for the motion. They both are of surprisingly simple analytical form and 
show a rather unanticipated behaviour. One has the form of a pile of granular 
material in the shape of a parabolic cap and the other has the form of an M-wave with 
vertical faces at  the leading and trailing edges. The linear stability of the similarity 
solutions is studied. A restricted stability analysis, in which the spread is left 
unperturbed shows them to be stable, suggesting that mathematically both are 
possible asymptotic wave forms. Two numerical finite-difference schemes, one of 
Lagrangian, the other of Eulerian type, are presented. While the Eulerian technique 
is able to reproduce the M-wave similarity solution, it appears to give spurious 
results for more general initial conditions and the Lagrangian technique is best suited 
for the present problem. The numerical predictions are compared with laboratory 
experiments of Huber (1980) involving the motion of gravel released from rest on a 
rough inclined plane. Although in these experiments the continuum approximation 
breaks down at  large times when the gravel layer is only a few particle diameters 
thick, the general features of the development of the gravel mass are well predicted 
by the numerical solutions. 

1. Introduction 
Landslides, rockfalls and snow and ice avalanches that initiate on steep slopes can 

travel large distances before they come to rest. Their occurrence is largely 
unpredictable, and in mountainous regions like the Alps they often constitute a 
threat both to human life and property. Prominent examples are the Elm rockfall 
(Switzerland) in 1881 (Heim 1882, 1932; Hsii 1978), the Sherman Glacier rock 
avalanche (Alaska) in 1964 (Shreve 1966, 1 9 6 8 ~ ;  McSaveney 1978), the prehistoric 
Blackhawk landslide (Alaska) (Shreve 1968 b)  and the various ice avalanches 
resulting from large ice masses breaking off from Bisgletscher a t  Weisshorn 
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(Switzerland) in 1636, 1819 and 1973 (Roethlisberger 1978, 1981) and from 
Alalingletscher (Switzerland) in 1965 (Roethlisberger 1974, 1978). In addition, there 
are hundreds of smaller ice and snow avalanches that occur each year in Switzerland 
alone and cause numerous casualties (Alean 1984, 1985; Salm 1966; Perla & 
Martinelli 1978). 

It has been observed that the slide behaves in a near fluid-like manner in that the 
granular material can be deposited in a very long and thin layer such that the nose 
moves through a surprisingly long distance. It has been suggested that the runout 
distance is volume dependent (Scheidegger 1975 ; Davies 1982) ; the larger the volume 
the larger the relative runout distance. Hypotheses to explain the fluidization have 
also been proposed (Erismann 1986; Goguel 1978; Hsii 1975; Kent 1965; Shreve 
1968~) .  The essence of each of these hypotheses is to introduce some novel type of 
fluidization mechanism to produce the high mobility of the large-volume rockfalls. 
Upward flow of air, hovercraft action, generation of high-pressure steam, lubrication 
by molten rock and the development of a thin rapidly shearing layer of vigorously 
fluctuating particles beneath a densely packed overburden are among the suggested 
mechanisms. Except for the last (Dent 1986 ; Hutter, Szidarovszky & Yakowitz 
1986), none of these proposals has been accompanied by either a rough or detailed 
computation of the flow development. 

Direct observations of the dynamics of rockfalls or avalanches are extremely 
difficult to make and are possible only by remote sensing techniques. Gubler (1987), 
using radar Doppler techniques, has been successful in following a few artificially 
released snow flow avalanches, but we know of no measurements of the dynamics of 
large masses of rocks or soil. Laboratory experiments of dry gravel flow have been 
conducted by Huber (1980) to predict the surface water waves in lakes due to 
rockfalls plunging into the water. The part of his experiments dealing with gravel 
flow is detailed enough to permit the description of the temporal evolution of the 
front and rear edges of the moving gravel down a plane surface. It is only recently 
that Pliiss (1987) and Hutter, Pliiss & Maeno (1988) have performed additional 
experiments along curved beds. Their chute contains a straight inclined portion. To 
date, these experiments are probably the only ones against which a theoretical model 
of the motion of a finite mass of gravel down an incline can be tested. 

This study is concerned with the development of a simple model for the flow and 
spreading of a finite volume of cohesionless granular material released from rest on 
rough inclines. The granular material is treated as an incompressible Coulomb 
continuum. Since we permit sliding to take place along the bed, a basal friction law 
is the second phenomenological relation that must be imposed on our model. As is 
customary, a dry Coulomb-like friction law is used for it ; it relates the shear traction 
to the normal pressure a t  the base and involves the friction angle between the gravel 
and the rough bed. 

In  $2 we present the model and simplify it by introducing a scaling analysis that 
takes explicit account of the fact that the moving gravel masses are long and shallow. 
This shallowness and/or long-wave assumption manifests itself in the hydrostatic 
pressure relation. Depth averaging the equations of conservation of mass and 
momentum leads to evolution equations for the profile geometry and transport 
(average longitudinal velocity) reminiscent of the nonlinear shallow-water equations. 

A fixed-domain mapping introduced in 5 3 transforms these equations to a simpler 
form ; from these new equations two similarity solutions with surprisingly simple 
analytical structure are constructed. One of these solutions has a parabolic cap 
profile; in the asymptotic limit as t +  00 its width spreads linearly in time and its 
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height decreases as t-'. The second solution has cliff-like edges and smaller depths 
towards the mid$le of the moving mass; it will be referred to as an M-wave. Its 
spread grows as t g  and its height decreases as t-; when t +- 00. Thus, for large time the 
asymptotic spread of the M-wave is smaller and the decrease in height is slower than 
for the parabolic cap profile. 

The linearized stability analysis in $4 shows rigorously that the parabolic cap and 
the M-wave solutions are stable against small perturbations which leave the spread 
of the moving mass unperturbed. We have not been able to construct general 
stability statements, but the limited analysis performed for the two solutions makes 
their stability probable. 

The equations of motion for the profile geometry and the transport have also been 
numerically integrated by finite-difference techniques ($ 5 ) .  The difficulties in finding 
a numerically accurate and stable finite difference scheme are noted. Two numerical 
schemes are presented, one Eulerian, the other Lagrangian. The former is able to 
reproduce the motion of the M-wave similarity solution quite well. On the other 
hand, it appears that even when the initial profile is something other than an M -  
wave, say the parabolic cap shape, the Eulerian numerical scheme eventually forces 
the profile into the M-wave solution. Such behaviour was not apparent in the 
laboratory experiments and it appears to be a numerical aberration. A second 
Lagrangian approach in which the grid is advected with the material particles is a 
natural choice for this problem which involves the determination of an unknown 
interface corresponding to the upper free surface of the finite mass of granular 
material. 

Section 6, finally, presents a comparison of our numerical predictions with a 
selection of laboratory experiments of Huber (1980) involving the motion of gravel 
released from rest on a rough inclined plane. Comparison with these experimental 
data clearly indicates that the gravel flow selects asymptotically the parabolic 
similarity solution. Considering that (i) initial configurations of the gravel mass in 
the experiments could not be accurately reproduced in the computations and (ii) the 
continuum model is doubtful in these experiments at  larger times because the gravel 
layer is only a few particle diameters thick, the general features of the gravel mass 
dispersion are well predicted by the numerical solutions. 

These results suggest that the present model can be used for the prediction of the 
motion of landslides, rockfalls, ice and snow (flow) avalanches. Extensions are 
presently underway to apply it to flows on more realistic beds which are curved and 
approach a horizontal flat. 

2. Governing equations 
We shall precede the detailed derivation of the governing equations by a physical 

discussion to provide a motivation and justification for what might appear a t  first 
glance to be some rather sweeping simplifying assumptions. 

2.1. Discussion of major assumptions 
2.1.1 Experimental evidence concerning rate-dependence of bed friction angle 

Previous studies of the behaviour of granular materials have often dealt with one 
or the other of two main characterizations (see Savage 1984). The earlier one (based 
upon soil mechanics work) which was usually meant for quasi-static deformations, 
shows no rate-dependence, and relates the shear stress at  some point on a plane 
element to the shear stress there through the Mohr-Coulomb yield criterion. Some of 
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the more recent studies including kinetic theories of granular flows (for example, 
Jenkins & Savage 1983; Haff 1983; Lun et al. 1984; Jenkins & Richman 1985; 
Campbell & Gong 1986; and Walton & Braun 1986) and annular-shear-cell 
experiments (Savage & Sayed 1984; Hanes & Inman 1985) have considered the other 
characterization for the rapid flow regime. They have examined the rate-dependence 
in detail and found that for constant bulk solids concentration the stresses depend 
approximately upon the square of the shear rate, a very strong rate-dependence 
indeed. The same rate-dependent mechanisms are a t  work a t  the boundaries. As a 
consequence one might infer that it is essential that constitutive models of the 
granular material both in the interior as well as at the basal boundaries exhibit 
significant rate dependence. As paradoxical as it may seem, the constitutive 
assumption used in the analysis of the present paper does not explicitly include any 
rate effects, but it is based upon an approximation of the experimental behaviour 
which has been observed by several investigators. Through the use of depth-averaged 
equations of motion we can exploit the simplicity which is inherent in these 
observations. 

The depth averaging to be performed in the present paper will yield a momentum 
equation that contains the shear stress at the bed. We thus require suitable 
constitutive assumptions which describe the velocity dependence of this bed shear 
stress. We shall begin with a brief physical discussion of the dominant effects in 
different flow regimes, mention some previous constitutive proposals, and then 
attempt to summarize the available laboratory experimental evidence from shear 
cell tests and free-surface open channel flows to give some support for the 
constitutive assumptions to be used in the present work. Attention will be focused 
upon results of tests which have particular relevance to the avalanche flow under 
consideration. 

Let us consider how the bed shear stress for a layer of cohesionless granular 
material of uniform thickness flowing over a rough bottom varies with flow rate. We 
also assume that the bed normal stress remains fixed; thus, a reduction in bulk 
density that might result (at high shear-rates) from an increase in flow velocity is 
accompanied by an associated expansion of the layer of granular material, keeping 
the bed normal stress (which is due to the weight of the overburden) constant. 

At very slow shear rates the interparticle contacts are relatively slowly changing 
and particle inertia effects are negligible. The bed shear stress is due to the resultant 
integrated normal and tangential (dry frictional) forces a t  the particle contact 
points. One finds a quasi-static, rate-independent behaviour that can be well 
described by a Coulomb yield criterion, 

A t  the other extreme at high shear rates, and at moderate solids concentrations, 
the particles acquire vigorous fluctuating motions in addition to their mean 
transport motion and interparticle contacts are short-lived. The stresses and othcr 
transport properties result from kinetic and collisional transfer of momentum, mass, 
energy, etc. This flow regime has been analysed by the previously mentioned kinetic 
theories of granular flows. In the flow regimes where the analyses are appropriate, the 
predicted quadratic dependence. of stresses upon shear rate is in fairly good 
agreement with laboratory measurements. 

The intermediate flow regime, in which both nearly instantaneous collisional and 
longer time particle interactions are present and contribute to the generation of 
stresses, is very important as it encompasses many practical applications and real 
flow situations. However, it  is much more difficult to handle theoretically and the 
only analytical attempts to do so have involved the patching together of results from 
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the two flow regimes mentioned above. Simple examples of this may be found in 
Savage (1983), Norem, Irgens & Schieldrop (1987) and in the more detailed analysis 
of Johnson & Jackson (1987). Savage (1983), for example, suggested that, for the case 
of a shear flow in a gravitational field, one might represent the total stresses as the 
linear sum of a rate-independent, dry friction part plus a rate-dependent ‘viscous ’ 
part obtained from the high-shear-rate granular flow kinetic theories. 

For a free surface flow of the kind of interest here with the x- and y-directions 
parallel and perpendicular to the bed plane, the ratio of shear stress pzy to normal 
stress p,, might be expressed 

where 6 is the friction angle of the sheared granular material, u is the velocity 
component parallel to the bed, p,(v)  is the quasi-static contribution to the normal 
stress pyy, u and pp are respectively the diameter and mass density of the particles, 
and v is the solids fraction (volume of solids/total volume) of the granular material. 

In the limit of very small deformation rates this reduces to 

tan6 = tanSS(v), (2.2) 

where 6, is termed the quasi-static friction angle. For high deformation rates (2.1) 
tends to 

where 6,(v) is the dynamic friction angle which typically appears from experimental 
measurements to be fairly close to 6,. 

Both annular-shear-cell tests and open-channel chute flows can be used to provide 
empirical information to determine the functions p,(v), fi(v) and f2(v) necessary to 
explicitly define (2.1). An example of such a determination may be found in Norem 
et al. (1987). 

Annular-shear-cell tests using quartz particles and other geological materials have 
been performed to investigate rate effects by Novosad (1964), Bridgwater (1972), 
Savage & Sayed (1984), Hungr & Morgenstern (1984b), Hanes & Inman (1985) and 
by Buggisch and Stadler (Stadler & Buggisch 1985; Stadler 1986; Buggisch & Stadler 
1986). These tests were performed by two quite different procedures. Savage & Sayed 
and Hanes & Inman used a procedure in which stresses were determined as a function 
of shear-rate at a constant value of solids fraction. This is the approach that a 
rheologist might choose. The usual procedure for obtaining such data is as follows 
(see Savage & Sayed 1984). A normal load is applied to generate a desired normal 
stress on the granular material contained within an annular trough in the lower 
portion of the shear cell. Material is sheared by differential rotation of the upper and 
lower parts of the cell. Rotation rate is increased (causing an expansion of the layer 
of granular material contained within the annular trough) until the desired mean u 
is obtained. Measurements are made of the torque, from which the shear stress can 
be determined. Tests are then continued in a step-like fashion increasing the loading 
weights and rotation rates to obtain data for shear stress and normal stress as 
functions of rotational velocity (or apparent shear rate) for a constant mean solids 
concentration v. For a constant v, the stresses are found to depend roughly upon the 
square of the shear rate. When the ratio of shear stress to normal stress for constant 
v from tests performed in this manner is plotted versus apparent shear rate, 
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considerable scatter can be present in the data. Nevertheless, very little rate- 
dependence in the stress ratio is usually observed. To quote from the paper of Hanes 
& Inman (1985): ‘The standard deviations of the stress ratios are approximately 
10% of the mean, supporting the concept of a nearly constant stress ratio (over a 
range of shear rates and applied normal stresses) for a given material.’ 

An alternative type of test procedure (which might be regarded as a soil mechanics 
approach) has been used for example by Novosad (1964), Bridgwater (1972), Hungr 
& Morgenstern (19846) and Buggisch and Stadler (Stadler & Buggisch 1985; Stadler 
1986 ; Buggisch & Stadler 1986). Typically they determined shear stress as a function 
of rotation rate for a constant applied normal stress. In such tests the mean solids 
concentration is not maintained constant but the thickness of the layer of material 
in the trough is free to change throughout the test. As rotation rate is increased the 
bed expands and the mean concentration decreases. Tests in which rotation rate is 
monotonically increased or decreased are quite consistent with little scatter for a 
given test. There can be differences between subsequent runs depending upon the 
initial consolidation of the material. This kind of test in which the mean 
concentration changes is not only very relevant to the avalanche problem of the 
present paper but also gives a clear indication of the velocity-dependence of the 
friction angle. 

The tests carried out by Hungr & Morgenstern (1984b) were performed with 
geological materials at high normal stresses with the aim of testing hypotheses about 
the mobility of large rock avalanches. Tests were performed with sand, mixtures of 
sand and fine rock flour, and sand submerged in water. Their results were plotted in 
terms of strength envelopes consisting of curves of shear stress versus normal stress 
at a constant rotation rate. The data were very well represented by straight lines 
through the origin, demonstrating a MohrXoulomb behaviour with a constant 
friction angle. There was little rate-dependence even though rotation rate was 
varied by three orders of magnitude. Hungr & Morgenstern were quite emphatic in 
their conclusions. ‘These results indicate an absence of rate and normal stress effects 
over a range of conditions and material characteristics that do not leave much room 
for exceptions. Their significance is simple : the hypothesis of mechanical fluidization, 
postulating a breakdown of the Coulomb relationship a t  high velocities, although 
intuitively attractive, is not correct.’ 

Recently Buggisch and Stadler (Stadler & Buggisch 1985 ; Stadler 1986; Buggisch 
& Stadler 1986) have performed numerous careful tests with a sophisticated annular 
shear cell. Experiments have been performed with a variety of granular materials 
including glass beads, limestone powder and various plastic particles, the materials 
being in the dry state as well as at various levels of saturation (up  to loo”/,) with 
liquids of different viscosities. Measurements of shear stress versus rotation rate for 
a constant normal stress show little rate dependence for the dry particles over a wide 
range of values of normal stress. Figure 1, which has been reproduced from Stadler 
(1986), shows some typical results for low normal stresses. The curves for the 
different normal stresses shown are very consistent with little scatter and show only 
a small increase of shear stress with velocity. 

The annular-shear-cell results mentioned above should be examined to determine 
the flow regimes to which they correspond. Obviously, if the shear rates (non- 
dimensionalized in some appropriate fashion) are sufficiently small that the flow is in 
the quasi-static flow regime where particle inertia effects are negligible, then a lack 
of rate-dependence would not be surprising. 

For the case of steady shearing flows a convenient non-dimensional parameter 

’ 
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FIGURE 1. Shear stress p,, versus linear velocity of shear cell U at constant applied normal 
stress p ,  for 1.1 mm dry glass beads (Stadler 1986). 

which characterizes the extent of fluidization and the importance of collisional 
stresses is the ratio 

where U is the velocity difference across the shear layer and H ,  is the shear-layer 
thickness. The numerator is proportional to the collisional normal stress and the 
denominator p ,  is the total normal stress. Very small values of R, correspond to a 
dominance of stresses generated by Coulomb dry frictional interactions and larger 
values (close to unity) of R, correspond to vigorous particle velocity fluctuations, 
nearly instantaneous collisions and generation of stresses primarily by collisional 
interactions. 

The tests of Savage & Sayed (1984) and Hanes & Inman (1985) at  the lower 
concentrations and higher shear rates are generally regarded as being in the ‘grain 
inertia ’ regime where collisional stresses are dominant. The measured shear stresses 
at constant solids concentrations show a nearly square dependence upon shear rate. 
The magnitudes of the stresses are reasonably close to those predicted by the 
granular-flow theories which postulate nearly instantaneous binary collisions. 

Table 1 shows some estimates of the largest values of R, for different values of 
solids fraction in the glass-bead experiments of Savage & Sayed (1984) and Hanes & 
Inman (1985). To calculate the values of R, shown we have used the largest values 
of U and applied normal stress p ,  at  a given solids concentration v. The values of 
R, are somewhat larger in the tests of Savage & Sayed but are still roughly similar 
to those for the data of Hanes & Inman. As a very crude guide we can conclude from 
this table that values of R, greater than about 0.1 correspond to the ‘fluidized’ state 
in which collisional interactions play a dominant role. 

We now examine the shear-cell data of Hungr & Morgenstern and Buggisch & 
Stadler ; both studies showed little or no dependence of shear stress upon shear rate. 
Consider first the sand-particle tests of Hungr & Morgenstern (1984b) which have the 
greatest chance of being in the fluidized state, i.e. have the largest value of R,. For 
example, consider the case of sand particles of 1.5-2 mm diameter, the highest shear 
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Investigators Savage and Sayed (1984) Hanes & Inman (1985) 

Particle dia. (mm) 1.80 1 . 1  1.85 

solids fraction, v 0.522 0.477 0.56 0.37, 0.42, 0.46 0.49 0.44 

TABLE 1. Values of R, = p p u z ( U / H J 2 / p T  in annular-shear-cell experiments of Savage & Sayed 
(1984) and Hanes & Inman (1985) 

4 3  0.17 0.38 0.036 0.26 0.11 0.22 

velocity of 0.98 m/s and the lowest normal stresses of about 20 kPa. While the cell 
depth was 20 mm, the height of the shear layer is not known. Roughly estimating it 
to be about 7 particle diameters yields a value of 0.0028 for R,. The normal stress 
levels in these tests are so large that the grain inertia effects are comparatively quite 
small and the flow can be regarded as effectively in the quasi-static regime. Thus we 
can conclude little about rate effects on the basis of these data since the effective 
shear rates are too low. 

Buggisch and Stadler were able to observe the thickness of the layer of sheared 
particles and found it to be between 4 and 7 particle diameters. Thus, for the normal 
stress of 2 kPa shown in figure 1 for 1.1 mm diameter glass beads, R, would range 
roughly between 0.15 and 0.45. Comparing this with the values of R, shown in table 
1,  we can conclude that the test data shown in figure 1 at the higher shear rates are 
in the fluidized grain inertia regime. The data thus cover the extremes of the flow 
regimes from the quasi-static flows, characterized by enduring interparticle contacts, 
to the fully fluidized, collision dominant grain inertia flows. Most importantly they 
show only a small rate-dependence in which shear stress increases only slightly with 
shear rate. 

Chute flows can be used aa another means to obtain information about constitutive 
behaviour that is relevant to the present granular avalanche problem. For steady 
two-dimensional fully developed free surface flow down a plane inclined at an angle 
5 to the horizontal it can be shown that the ratio of the shear stress to the normal 
stress perpendicular the inclined plane must be equal to tan [ throughout the depth 
(Savage 1983). Since the bed normal stress corresponds to the weight of the layer of 
granular material, by increasing the bed inclination sufficiently, it is easy to generate 
well-fluidized flows in the grain inertia regime for small depths of material. Typically 
it is observed (see the annular-shear-cell tests mentioned earlier) that the ratio of 
shear to normal stress increases slightly with decrease in solids fraction v. Hence, as 
bed inclination angle increases the velocities increase, dilation occurs and the 
increase in the dynamic friction angle makes it possible for a steady-state fully 
developed flow to exist at  the larger value of g. If the inclination angle is increased 
to an angle greater than the dynamic friction angle that the material can develop, 
then the flow will continually accelerate down the chute. The range of dynamic 
friction angles that can be developed seems to depend upon the particular granular 
material. The range of chute inclination angles that permitted non-accelerating flow 
in the polystyrene bead tests of Savage (1979) and Hungr & Morgenstern (1984a) is 
about 10". We note that the constitutive behaviour which can be inferred from these 
chute flows is quite consistent with that observed in the polystyrene-bead annular- 
shear-cell tests of Savage & Sayed (1984). Chute tests with some other materials have 
shown that steady flows were possible for a very much smaller range of inclination 
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angles. Augenstein & Hogg (1978), in their experiments with sand particles, found 
steady chute flows for only a single inclination angle. Bailard (1978), who also tested 
sand particles, obtained steady -flows for a range of inclination angles from 34" to 
39O. 

It is also possible to determine the friction angle for accelerating chute flows for 
chute inclinations steeper than that required for steady non-accelerating flow (for 
example, see Knight 1983 and Hungr & Morgenstern 1984a). Knight found that the 
bed friction angle 8 for spray-dried detergent was constant, independent of velocity, 
even for very highly accelerating flows where the material becomes very dilated as 
it flows down the chute. Hungr & Morgenstern ( 1 9 8 4 ~ )  determined the ratio of bed 
shear stress to normal stress as a function of average chute flow velocity both 
indirectly by considering flow acceleration and directly by measuring wall stress over 
a section of the chute. Tests were performed with Ottawa sand, mixtures of sand and 
rock flour, and polystyrene beads. The polystyrene-bead data showed relatively little 
scatter and, as noted earlier, a gradual increase in shear to normal stress ratio with 
chute flow velocity. The data for the sand and sand-rock flour mixture from both the 
direct measurement and from the acceleration tests contained a scatter that 
exceeded the estimated error bounds. The authors could find no explanation for the 
unexpected magnitude of this scatter. Hungr & Morgenstern concluded that their 
chute flow data showed ' . . . no systematic dependence on shear strain rate '. 

As a final remark we note that in small-scale laboratory tests using small particles 
at high inclination angles in the splashing flow regime (Savage 1983; Ishida, Hatano 
& Shirai 1980) where vigorous saltation occurs and a low-density cloud of particles 
is present at the top surface, air drag effects become significant and act to restrain 
the particle velocities. This can give rise to a rate-dependence which is not likely to 
be present in geophysical-scale field events involving much larger particles. 

2.1.2. Assumption of rate-independence for bed friction angle 
The data discussed in the previous section show that the dependence of the bed 

friction angle 6 on shear rate is generally quite weak. While the data for flow of 
polystyrene beads show a gradual but observable increase of 6 with shear rate, the 
data for tests with glass beads, sand, and sand-rock flour mixtures (which are 
probably more typical of the behaviour of real geological materials) show only a very 
small, and in some cases not observable, dependence upon shear rate. The data cover 
the range of flows from the quasi-static to the grain inertia regimes. 

In the present paper, which deals with dry cohesionless granular materials, we 
shall assume that the bed friction angle S is constant, independent of shear rate and 
solids concentration. This assumption can result in major simplifications in the 
analysis of the granular avalanche motion. By performing depth averaging we need 
only be concerned, for example, with quantities such as stresses at the bed rather 
than the distribution of stress throughout the depth. When the pile is long and thin 
and slowly varying, the normal stress at the bed is determined by the depth of the 
overburden. Through the bed friction angle (which we assume to be rate-independent) 
we can determine the bed shear stress. By use of the depth averaging we avoid the 
need to consider the detailed character of the flow and avoid the complexities 
inherent in an analysis that uses a constitutive equation based upon, say, the kinetic 
theories of granular flows. A kinetic-theory approach would involve solution of an 
additional energy equation, solutions for granular temperatures, velocity and 
density variations. These solutions would involve the use of the very complex 
boundary conditions for granular temperatures, velocities, stresses, etc. It has been 
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demonstrated by Szidarovszky, Hutter & Yakowitz (1987) that the construction of 
solutions to the related problem of chute flows (Savage 1979) is very difficult. 

2.1.3. Velocity and density profiles 
Melosh (1986) has reviewed field data from very large landslides and concluded 

that the evidence suggested sliding on a thin basal layer. The basal zone is the active 
zone where the shear rates are high and nearly all the shear takes place. Thus the 
velocity profile is expected to be quite blunt and the depth-averaged streamwise 
velocity is quite close to the actual velocity everywhere except at the very base. 
Furthermore, since the vigorous shearing, fluidization and significant density 
variations are confined to a thin basal layer, it is sufficiently accurate to use a 
constant depth-averaged value for the density in our computations. 

2.2. Detailed derivation 
We now continue with the development of the governing equations. Consider free 
surface flow of a granular material along a slowly varying bottom profile (see figure 
2). We assume that the granular material can be treated as a continuum which 
implies that the thickness h of the sliding and deforming body extends over several 
particle diameters. Moreover, for the reasons just explained, we shall ignore 
variations of the density due to changes of the void ratio within the avalanche. 
Under these conditions an incompressible model, consisting of the balances of mass 
and momentum, namely v * u = o ,  1 

I au 
p- dt = - v * p + p g , )  

may be used to describe the motion of the avalanching mass. In these equations u is 
the velocity vector, p the constant density, p the pressure tensor and g the vector of 
gravitational acceleration. Through a constitutive relation the pressure tensor p and 
the motion u can be functionally related. 

Boundary conditions at  the free surface may be expressed in terms of a function 
Fs(x, t )  which is zero for a particle there, i.e. 

at FB(x, t )  = 0. 
-+VFs-u ws = 0, 
at 

p . n  = 0, J 
The first is the kinematic statement that the free surface is material, the second 
expresses stress-free conditions, and n is the exterior unit normal vector. 

Similarly for a ‘particle’ at  the base, such that FB(x) = 0, the statement u - n  = 0 
expresses the tangency of the flow. Furthermore, we assume a solid friction law, 
which relates shear traction S to the local friction angle 6 and the normal stress 
N,S = +Nta.nS, where the sign is given by the direction of the sliding velocity. 
With 

and N = n - p - n  

the two boundary conditions become 

u-n = 0 1 

n-p-n (n .p .n )  = - &(x) = 0. 
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FIGURE 2. Sketch of the geometry of a finite mass of granular material moving along a curved rigid 
bed showing definitions of the free surface given by F,(x, t )  = 0 and the equation of the bed 
FB(x) = 0. Also indicated are the scales [L] and [HI for the spread and maximum height. 

where us is the sliding velocity relative to the stationary bed. Equations (2.4)-(2.6) 
comprise the complete boundary-value problem. 

We now introduce the plane Cartesian coordinates 2 and y (see figure 2). In this 
coordinate system the field equations (2.4) become 

(2.7a) 

(2 .7b )  

The mean inclination angle, denoted by c, is constant. 

accordingly. To this end let 
It is advantageous to non-dimensionalize the equations by scaling variables 

(5, 9 )  = ( [ j 5 1 2 * 3  [HIy*), 

Quantities in square brackets are typical values for the variable in question and 
variables having an asterisk are dimensionless and are taken to be of order unity. We 
have scaled quantities in the x- and y-directions differently ; [L] is a typical span or 
spread of the slide and [HI a typical depth. Observations indicate that the aspect 

7 FLM 199 
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ratio E = [ H / L ]  is small. This scaling is different from the well-known shallow-water 
scaling. The longitudinal velocity scale is (gL);, which indicates that the phenomenon 
is governed chiefly by free fall rather than by surface waves (which would require the 
use of (gH)f) .  In ensuing developments we shall define the free surface and the bed by 
y = h(x, t) and y = b(x) ; h and b will be scaled respectively by [HI so that 

h(x, t) = [H]h*(s*, t*), b ( ~ )  = [H]b*(x*). (2.9) 

Both, h* and b* as well as ah*/ax*, db*/dx* will be assumed to be order-unity 
functions. This latter assumption on the derivatives is equivalent to the assumption 
of slow variation of the bed and the free surface since ah/ax and dbldx are order e .  
With (2.8) and (2.9), (2.7) take on the form 

au av 
ax ay 
-+- = 0, 

3 P X X  ( a:;) ax -+u-+v-= sing 1-- -ECOSI;---, 
au au au 
at ax ay 

e -+u-+v- =-cost i + h  -€sin[-, aPx ,  {: :: :;} ( ay ) ax 

(2.10a) 

(2.10b) 

(2.10 c )  

in which for brevity asterisks have been omitted; subsequently this will always be 
done. 

In the limit as s+O, (2.10~) reduces to the hydrostatic equilibrium equation, 
yielding 

(2.11) 

after integration and taking account of the zero pressure condition at the free 
surface. 

The shallowness or long-wave limit E + O  leads to an x-momentum equation in 
which one is tempted to ignore longitudinal stress gradients (i.e. the last term in 
(2.10b) would be dropped). The emerging set of equations is, however, too simple to 
model avalanche motions properly. Obviously, while the dimensionless pressure is an 
order-unity function, ap,,/ax is sufficiently large that E apx,/i3x is non-negligible. On 
the other hand, in the transverse momentum equation, si3pz,/ax and the transverse 
acceleration are small and negligible so that E +- 0 implies the hydrostatic pressure 
assumption. The procedure to be used in the present analysis is as follows. We shall 
depth average the x-momentum equation which, after further simplification, will 
eventually contain terms involving the bed shear stress and the integral over the 
depth of the normal stress pxz .  The latter term (corresponding to the last term of 
(2.10 b) is of order E .  We shall relate p,, and p,, to one another throughout the depth 
and relate p,, to p,, at the bed through the use of constitutive assumptions. Thus 
it is consistent (to order e) to obtain an order-unity expression for p,, (as in (2.11)), 
determine p,,  from it through the constitutive assumption, and finally use this 
expression for p,, in the last (order E )  term of the depth-averaged (2.10b). This will 
yield a final set of equations which is accurate to order E .  Such scaling arguments are 
well established in the glaciological literature where it is recognized that the 
longitudinal stress variations (the last term on the right-hand side of (2.10b) are non- 
negligible when sliding is significant in comparison to differential shear (Fowler 1980, 
1984 unpublished). We could in a second step improve the overburden pressure by 

P,,(X, Y, t )  = h(x, 0 -Y 
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substituting the results obtained for u, v and pxy and evaluating a correction to pvv 
according to 

(2.12) 

In this spirit we now proceed. In a first step (2.10b) is integrated from y = b to 
y = h. Making use in this process of the continuity equation and using Leibnitz’s 
rule when interchanging differentiations and integrations, it is found that 

Several terms in this expression vanish in view of the boundary conditions which are 
imposed at the free surface and the bed. The kinematic conditions read 

ah ah 
-+u--v  = 0 at y = h ( x , t ) ,  
at ax 

J ab 
ax 

u--v = O  at y = b(x). 
(2.14) 

Second, the stress condition (2.5) at  the free surface y = h(x, t )  expressed in terms of 
dimensionless coordinates reads 

ah ah 
-ecosI;p,,-+sin(p,, = 0, --ssin[px,-+cos~p,, = 0 at y = h(x,t). 

Consideration of the constitutive relationship given below (cf. (2.19) and (2.20) and 
figure 3) at  the stress free surface yields px5 = kactpasspyy so the last two equations 
imply 

p,, = pYy = 0 * p,, = 0 at y = h(x,t). (2.15) 

With (2.14) and (2.15), (2.13) simplifies and becomes 

ax ax 

We now define the transverse averages 

in which k = h-b is the depth. Values of u1 which deviak from unity give 
information about the deviation of the velocity profile from ui1iformit.g. To give some 
idea of numerical values for a1 note that for a parabolic veloeity profile with 
vanishing basal velocity (corresponding to no sliding. all differential shea.r) 

&, z= 6 
5 ‘  

7-2 
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stress 

Norma1 
stress - 

(PZZ,7) Eve 

0 Active stress state - > 0 (:: ) Passive stress state - < 0 (:: ) 
FIGURE 3. Mohr diagram showing Coulomb yield criterion, bed friction angle, and active and 

passive stress conditions. 

whereas for a uniform profile (all sliding and no differential shear) 

u1 = 1. 

Since it is likely that sliding is present, the active shear zone is confined to a thin 
basal layer and the velocity profile is blunt (Melosh 1986), we may, without 
introducing a large error, choose a, x 1.  

With our shallowness assumption the non-dimensional form of the Coulomb 
sliding law (2.6) becomes 

p,, = -sgn(.ii)pyycot[tan6+O(e2) a t  y = b(s). (2.18) 

The final statement that is needed is a constitutive relationship for the pressure 
tensor. On the basis of the earlier discussion we assume the granular pile to behave 
as a cohesionless Mohr-Coulomb type material (see, for example, Roscoe 1970) 
described by a constant internal friction angle q5. Thus yielding will occur a t  a point 
on a plane element when 

IS1 = N tan q5, (2.19) 

where S and N are respectively the shear and normal stress acting on the element. 
The bed shear stress was previously expressed in analogous fashion in terms of a 
constant basal friction angle 6 (see (2.6)). This assumed constitutive behaviour is 
shown graphically by means of a standard Mohr diagram in figure 3. We assume that 
an active or passive state of stress is developed depending upon whether an element 
of material is being elongated or compressed in the direction parallel to the bed. Thus 
the stresses normal and parallel to the mean inclination angle may be related in 
standard fashion through the use of an earth pressure coefficient, kactpass, thus 

Pzz  = kactpass P,y> (2.20) 

where kactpass = k,,, or kpass, and from figure 3 it may easily be shown that 

‘act} = 2[1 T (1 -(i + t a n ~ ~ ) c o s 2 ~ ) ~ ] / c o s 2 ~ ) -  1 for a,iqax = 2 0. (2.21) 
kpass 
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Incorporating (2.17)-(2.20) into (2.16) yields 

191 

a a 
-(6uj+-(alitiz) = sin@--EcosCkactp,,, 
at ax 

- cos Csgn(ti)p,,(x, b )  tan 8. (2.22) 

The overburden pressure is obtained from (2.11 j 

I p,,h bj = h(x, t )  -b(x)  = i (x ,  t ) ,  

ipy,(x, t )  = $(h(x, t )  -b(x))2 = $(x, t ) ,  
(2.23) 

so that (2.22) now becomes 

(2.24) 

Finally, if we integrate the continuity equation ( 2 . 7 ~ )  over the depth and use the 
kinematic boundary conditions a t  the free surface and a t  the base, we obtain 

a i  a 
-+-(ha) = 0. 
at ax 

(2.25) 

Using (2.25), (2.24) can be simplified to 

-+ti-- = sin 5- E cos 5 kactpass - sgn (ti) cos tan S, (2.26) 
ati ati 

at ax 
where we have set a, = 1. 

Equations (2.?5) and (2.26) comprise a system of two partial differential equations 
for the profile h(x,t) and the transversely averaged velocity ti(x,t). Provided the 
internal angle of friction 9, the basal friction angle 8, and the basal geometry 
(through the angle 5 and the function b(x) )  are known, the evolution in time of both 
h and ti can be determined if an initial profile and a velocity distribution 

h(x,O) = h,(x), t i ( X , O )  = t io (x) ,  

are prescribed. Interestingly, except for the term in brackets in (2.26), (2.25) and 
(2.26) contain only the difference i = h-b. Were it not for this term the basal profile 
would simply be superimposed on the avalanche depth; For the motion of an 
avalanche along a planar bed we may set b = 0 and replace h by h. The considerations 
of the present paper will be restricted to  this case, and we quote below the resulting 
equations which will be called system (I): 

(2.27aj 
ah a 
at ax 

(2.273) 

-+-(hu) = 0,  

du  au au ah 
- = - + u- = (sin [-tan Ssgn (u)  cos 5) -@-. 
dt at ax ax 

Here we have omitted the overbars for simplicity. Furthermore, 

P = Ekactpass cos C 
is a small constant. 

(2.28) 
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Boundary conditions which must be imposed upon (I) are 

h(x,  t ,  = hF(t) = xF(t),\ 

h(x, t )  = hR(t) 2 = ~ R ( t j .  J 
(2.29) 

where xF(t) and x,(t) denote the front and rear margins respectively, and the depths 
hF(t)  and hR(t) are prescribed functions of time. Note that hF(t) = hR(t) = 0 are 
obvious choices, but cliffs are also possible. 

Finally, we mention that the margin velocities are given by 

(2.30) 

3. Similarity solutions 
The basic idea in finding particular solutions to the moving-boundary-value 

problem of the last section is to apply a fixed domain mapping by which the span 
interval is mapped onto a fixed interval?, [ - 1,1].  To this end, we define 

uo(t) = (sin[-tancYcos[)dt. s, 
This corresponds to the velocity of a point mass and is the solution to system (I) for 
a rigid granular mass. We have assumed that the bed slope and bed friction angle are 
such that the sgn(.ii)-term in (2.26) is always positive. We shall subsequently 
examine the restrictions on the solutions that this implies. The translation (see figure 
4) 

5 = x-[ u,(t’) dt’ (3.2) 

shifts the origin of the frame (5, t ) ,  moving with velocity uo(t), to  the location where 
ahlax = 0. With (3.2) it is now also convenient to introduce the difference velocity 

I2 = u-u,(t) (3.3) 

as a new unknown. For the purposes of this similarity analysis we further suppose 
symmetry with respect to 6 = 0 of the depth profile and skew-symmetry of the 
difference velocity, viz. 

h(5,t)  = h ( - L t ) ,  G ( 6 , t )  = - G ( - t , %  (3.4) 

6F = g(t), 6R = -g(t)* (3.5) 

so that the front and rear margin positions are given by 

It follows that under these restrictive conditions the fixed-domain mapping is given 

t Note that for the similarity solutions it is most convenient to choose the lengthscale [L] to 
correspond to one-half of the length of the pile at some reference time, whereas for the numerical 
simulations presented later the lengthscale [L] is taken to be the total initial length of the pile at 
time t = 0. 
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FIGURE 4. Explanation of the mapping of the space occupied by the granular mass in the 
physical domain to the fixed domain. 

With the aid of these formulae we easily deduce 

Thus, system (I) assumes the alternative form 

( 3 . 8 ~ )  

(3 .8b)  

Here again we have replaced T by t ;  moreover, the prime denotes univariate 
differentiation. The similarity solutions we present below are based on system 
(11). 

3.1. The parabolic cap 

which is consistent with the symmetry requirement (3.4). With (3.9), (3.8b) reduces 
to 

_ -  ah 99”?/, - -- 
a.rr P 

or upon integration, 

in which the boundary conditions 

99” 
2P 

h = - (1  - q2) ,  (3.10) 

(3.11) k(7 = k 1) = 0 
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were invoked. For the present case the material elements are always expanding in the 
direction parallel to  the bed, so the stress state corresponds to the active case and 
kactpass = kwt. 

Conservation of the total mass, M ,  in the pile requires that 

(3.12) 

This solution is consistent with (3.8a), as it can easily be demonstrated that with 
(3.10) and (3.12) the equation is identically satisfied. Alternatively, we could have 
substituted (3.10) into (3.8a) and obtained a differential equation for g for which a 
first integral would have led to (3.12). However, the physical interpretation of the 
constant of integration, K, would still have required a total mass balance statement. 

g(0) = 1.0, g'(0) = 0 (3.13) 

corresponding to a pile of physical length 2L a t  rest at t = 0. Changing the 
independent variable in (3.12) from t to g and letting p = g', (3.12) is seen to be 

We shall integrate (3.12) subject to the initial conditions 

equivalent to 

from which, on imposing (3.13), a final integral is seen to be 

p2 = 2K(1- l /g).  

Thus, since p = dg/dt, we obtain the separable equation 

(3.14) 

(3.15) 

The substitution g = z2,  dg = 22 dz will transform the term on the left-hand side to 
a standard, integrable form (see e.g., Dwight 1968, integral No. 262.01). The final 
solution of (3.15) subject to the initial condition g(0) = 1 reads 

(g(g-i))b+InIgt+(g-i)bl = (%)it, (3.16) 

and defines t as a function of g.  The inverse relationship is plotted in figure 5 for 
M = $ (corresponding to an initial profile h(6,O) = (1 - t2) )  and the indicated values 
of the shallowness parameter p. Evidently, the lateral spread g is monotonic- 
ally increasing with time and approaches a linear relationship as g+ CO, namely 
g - (2K)tt. Incidentally, the graphs in figure 5 were obtained by integrating (3.12) 
with the Runge-Kutta method, and the results were checked with the aid of 
(3.16). 

The complete solution is now given by (3.9), (3.10) and (3.16). With the aid of 
(3.12) and (3.15) it can be written in the following parametric form: 

(3.17q b)  

where g(t) can be deduced from (3.16). It is not difficult to extract from these the 
large-time behaviour. 
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FIGURE 5.  Lateral spread of the parabolic-cap solution as a function of dimensionless time. 
Note that g approaches a linear relationship when t becomes large. 

Recall that it was assumed in the specification of the bed friction in the present 

(3.18) 
similarity analysis that 

u > 0. 

This implies that Iiil < uo or in other words 

9' < uo. (3.19) 

It is important to verify that the similarity solutions are consistent with this 
assumption. It is found that in some cases, for example for large values of E ,  over a 
portion of the pile near the trailing edge at small time, condition (3.18) can be 
violated. Typically, as the flow develops the pile soon reaches a downstream position 
where condition (3.18) is then satisfied. Let us now determine this small-time 
consistency condition. Using M = $, (3.12) becomes 

g"qZ = 2/39 

g1 = 2pt. 
from which we find for small time 

(3.20) 

(3.21) 

For constant 6 and 6, (3.1) yields 

uJt) = (sin6-tanScosC)t. (3.22) 

Substituting (3.21) and (3.22) into (3.19) gives the consistency condition at  small 
time 

sl( = 2Ekactpass cos 6 < 1, (3.23) 
u,, t+O 

This may be expressed in terms of an upper limit on E for which the similarity 
solutions are consistent at small times. For example, for the case of S = 15", $ = 30" 
and 6 = 30°, (3.23) yields E < 0.445. Increasing 5 to 45" yields E < 0.754. Both of these 

sin c- tan S cos 5 
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values for E are probably greater than that for which the assumptions used in the 
derivation of the equations of motion are valid. Cases when 5 is close to 6 yield 
smaller values for s ;  values of S = 22", q4 = 29" and 6 = 32" corresponding to the 
experiment of Huber mentioned in $5.1 gives E < 0.148. 

It can easily be shown that an entire family of similarity solutions related to  (3.17) 
exists, not necessarily having zero margin depth but finite and constant normalized 
depth d,. For these profiles (3.16) and ( 3 . 1 7 ~ )  still hold, but (3.176) must be 

K 

9 
h(r , t )  = - U + d * - r 2 ) ,  

with (3.24) 

3.2. The M-wave 
Consider once more equations (11) and let us seek separation-of-variables solutions of 
the form 

4 9 ,  t )  = 4 ) H ( r ) ,  q r ,  t )  = k ( t ) F ( r ) .  (3.25) 

Substituting (3.25) into (3.8) yields 

9'1 kl H--~yH'+-(HF)' = 0, 
gl' gl' 

F--F+7FF+7H' g'k k2 Pl = 0, 
gk' gk 9k 

(3.26) 

which constitute two ordinary differential equations for H and F provided that 

s ' l - - - -  kl g'k k2  1 
gl" gl" gk" gk" gk' 

(3.27) 

are all constants. If we try the power solutions 

g = t " ,  1 = t Y ,  k = t s  (3.28) 

it  can easily be demonstrated that the five expressions in (3.27) are all time- 
independent if 

A third relationship among the exponents a, y and S follows from the conservation 
of total volume: 

y = 2 S  and 6 = a - l .  (3.29) 

1 1 

h(r,t)g(t) d r  = t a f y  H ( r )  d r  * fW> I, s_, 
implying ol+y = 0. (3.30) 

From (3.28) and (3.29) we obtain 

a = 2  3, y = -i, S = -1 37 (3.31) 

g = t f  1 = t f ,  k = t-i, (3.32) 

7 = $6, h = t-- ;H(?), 4 = t-- iF ( r ) -  (3.33) 

F H + ( F - % ) H  = $H, ( F - % ) F + / ? H  = i F ,  (3.34) 

Substituting (3.28) with (3.25) into (3.26) yields the ordinary differential equations 



Motion of a grunular material down a rough incline 

Parabolic cap M-wave 

Depth 

0 1 

197 

a simple solution of which is given by 

(3.35) 

Thus, the difference velocity .ii is linearly distributed in 7 while the depth profile 
is parabolic as shown in figure 6. It is this shape which prompted us to label this 
solution as the ‘M-wave’. The total volume M and d ,  are related by 

y. 

M = - (d, -2)). 3 
9P 

In  summary, we have found two types of similarity solutions. The M-wave 

1 2  
(3.36) 

behaves as 
d = it-$, h = -t-s ( d ,  - (1 - q 2 ) )  ; 

9P 
d and h decay with time, but the spread grows as g = ti. The other, parabolic cap, 
solution (see figure 6) has a more complicated evolutionary behaviour and its 
asymptotic behaviour for large time is 

(3.37) 

with g - (2K);t. In this solution the difference velocity becomes time-independent as 
t+ co, and h decays as t-l, while the spread grows linearly with t .  The mean absolute 
asymptotic velocity of both waves is the same however, as both have the same 
u,(t). 

Because we have assumed in this similarity analysis that u is always positive, the 
analysis is inconsistent at small times. Note that, in this instance, the inconsistency 
occurs for all. values of E not just for values greater than some limiting one, as in the 

FIGURE 6. Shapes and velocity distributions of the parabolic-cap and the M-wave profiles in the 
fixed-domain space. 
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case of the parabolic-cap solution. Thus using (3.2) and 
the M-wave similarity solutions are only consistent for 

(3.22) in (3.19) implies that 
times 

(3.38) 

We note that this kind of breakdown of the similarity solutions for small times is not 
uncommon. For example, there exist similarity solutions for fluid-mechanical jets, 
plumes, etc. I n  any real physical situation these break down at the origin because 
they imply infinite velocities, point sources, etc. The relevance of the similarity 
solutions in these cases is that they can be regarded as asymptotes and in this context 
they are both useful and of interest. Note that, for example, the computations based 
upon the Lagrangian numerical approach described in $5.3 found that even 
significant perturbations to the similarity profile relax into the similarity solutions 
after a relatively short time. The analytical or semianalytical similarity solutions can 
also serve as means to check the validity of numerical integration schemes which we 
have found to be other than trivial to implement. 

We remark in conclusion that the physical validity of the M-wave solutions must 
be viewed with some caution since the assumptions used for the derivation of the 
governing equations break down a t  the front and rear margins. On the other hand 
this situation is quite analogous to approaches commonly used in hydraulics. For 
example, in the study of roll waves which have steep fronts (Stoker 1957, pp. 
461469) the depth-averaged shallow-water wave equations are used over essentially 
the whole wavelength, and hydraulic jump conditions are used to join separate 
waves. 

4. Considerations of stability 
It is of interest to know how the avalanche depth profile would evolve from an 

initial profile of a roughly rectangular or triangular shape, in particular whether it 
would tend to  approach either the parabolic-cap or M-wave similarity solutions. 
One’s intuitive sense about the possible temporal development of the avalanche 
shape is likely to be confused. On one hand, no clear tendency to evolve into the M- 
wave profile is present in Huber’s (1980) data and furthermore the more recent tests 
by Hutter et al. (1988) and K. Hutter, Ch. Pliiss & S. B. Savage (paper in 
preparation) show a prevailing tendency to evolve towards the parabolic-cap 
similarity solution. On the other hand, these experimental data are not exhaustive 
and one is reluctant to rule out the possibility of M-wave solutions. The equations 
of motion used here are similar in form to the shallow-water wave equations in which 
nonlinearity causes wave steepening of the kind that would give rise to M-wave 
development. It was felt that  stability analyses of both the parabolic-cap and the M- 
wave similarity solutions would not only give some qualitative information about 
the possible profile evolution but also might warn of possible numerical difficulties. 

4.1. Restricted small-perturbation analysis of the parabolic-cap solution 

I n  this section we prove that the parabolic-cap solution is stable against any small 
perturbation which leaves the spread g unperturbed. To this end let 

22 = u, + .ci = yg’(t) + 6,  
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(We only analyse the case d, = 0.) As mentioned above, g ( t )  is not perturbed and is 
given by (3.16). Substituting (4.1) into (3.8), rearranging and linearizing in the 
perturbation quantities (carrying the hat) yields 

from which the following single partial differential equation for 4 can be deduced : 

L,(t) [GI+ Dl(7) [GI = 0, - 1 < < 1,  

in which the operators L,(t) [ -1  and D1(v) [ -1 are given by 

(4.3) 

(4.4) 

Boundary conditions that must be imposed on (4.3) are 

4 = 0  a t  ? = + I ,  (4.5) 

while the initial conditions require the prescription of the ?-distribution of .Zi(q, 0) and 
aG/at(?,O). The exact form of these will not be needed in the sequel. Incidentally, 
(4.5) follows from the facts that G( + 1,  t )  = g’(t)  and i ( t )  = 0. 

I n  view of the form of the operators L, and D, we look for a separation-of-variables 
solution 

With (4.6) the boundary-value problem (4.3)-(4.5) leads to  the eigenvalue problem 
for X 

and the evolution equation for T 

L,(t) [T(t)] + h2T(t) = 0, 

T(0)  = To, T’(0) = T;.  

In these equations h2 is the separation constant, the eigenvalue to be determined. 
The expression for X(7) provides the spatial distribution of 4 and T( t )  gives its 
evolution in time. 

We solve the eigenvalue problem (4.7) first. To this end, let 

X = i (1-7) .  (4.9) 

With this transformation 9 E [ - 1 , 1 ]  is mapped on to X E  [0,1] and the eigenvalue 
problem (4.7) becomes 

(4.10) x ( x - ~ ) X ” + ( ~ - ~ X ) X ’ + ~ A ~ X  = O ,  0 < x < 1,  

X ( X )  = 0, x = 0 , l .  
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This is an eigenvalue problem of the hypergeometric differential equation. According 
to Abramowitz & Stegun (1964, pp. 562ff.), two independent solutions are 

X, =P(a,b,c;z), x, = lnzF(a ,b , c ; z )+P ,  (4.11) 

where c = 2, c = 2-, 

r(c) O0 r(a+n)r(b+n)zn 
r(a)r(b)a- , ,  r ( c + n )  n! 

In the above, 
- F ( a , b , c ; z )  = I; (4.13) 

is the hypergeometric function, r is the gamma function and P is a power series in 
x which is regular for z E [0,1]. The power series (4.13) is convergent at  z = 1 provided 
that c-a-b > 0 (which in fact equals 7),  and X, defined in (4.11) is a solution of 
(4.10) as long as 1x1 < 1 and a, b + 0. Since ab = -2A2 and h =I= 0 (as we shall see) the 
general solution of (4.10) is 

X ( z )  = A X , ( z )  +BX,(S) .  

Regularity at z = 0 requires B = 0 and the boundary condition at x = 1 demands 
Xl(l)  = 0, or (see Abramowitz & Stegun 1964, p. 556) 

whence 

r ( c )  T(c - a - b)  
F(a,  b, c ;  1) = = 0, T(c-a) T(c -b )  

r(2) r(7) 
T(2-a)r(7+a) = O' 

(4.14) 

Poles of f( - )  are at 0, - 1, - 2, - 3, . . . ; so the eigenvalues are given by 

a = 2 , 3 , 4  ,... and a = - 7 , - 8 , - 9 , - 1 0  ,.... 
With these and (4.12) we deduce 

A* = @(a+5)  * = $(n+l)  (n+6) > 0, (4.15) 

Next we use (4.8) to extract the stability statement. With (4.4), (4.8) can be 
which are indeed positive numbers for all possible values of a (or n = 1,2, ...). 

written as 

(4.16) 

To see whether the solution to this equation is asymptotically growing or decaying 
in time it suffices to analyse (4.16) for large time. Since g( t )  - (2K)tt as t - t  co, (4.16) 
reduces in this limit to the Euler equation 

PT"+3W+T = 0 ( t+ 00)  (4.17) 

with the two independent solutions 

5"(,) - t - l ,  T(,, - t-llnt ( t +  co), (4.18) 

both of which are vanishingly small for t - t  co. This proves stability of the small 
perturbation of the parabolic-cap solution when g(t )  is left unperturbed. 
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4.2. Restricted small-perturbation analysis of the M-wave solution 

In this subsection we demonstrate that the M-wave solution is stable against any 
small perturbation which leaves the spread g unperturbed. 

Substituting the representations (4.1) (in which g = t:) into (3.8), linearizing ,the 
emerging equations in the perturbation quantities and eliminating the variable h as 
before yields 

(4.19) 

as a partial differential equation for 4. The operators L2(t) and D2(q) are given by 

I 
(4.20) 

They are second order in time and space, respectively. As before the boundary 
conditions are 4 = 0 for q = & 1. With 

4% t )  = T(t)H(T) (4.21) 

(4.19) and (4.20) imply the eigenvalue problem for H 

(4.22) D2(7) [(H(1])1+A2H(~) = 0. -1 < 'I < 1, 

a(??) = 0, T = + I ,  

and the initial-value problem for T 

I L2(t) [T(t)]+A,T(t) = 0, t > 0, 
T(0) = T,, T'(0) = Ti, t = 0. 

(4.23) 

Using a Rayleigh quotient argument all eigenvalues A2 of (4.22) can be shown to be 
positive. Using this same Rayleigh quotient an estimate for the smallest eigenvalue 
can be found to be A2 > a. The differential equation (4.23), or 

d2T dT 
dt2 dt 

t2-+22t-+A2T = 0 (4.24) 

is of equipotential (Euler) form and thus admits the two power solutions 

t-?j(lzk (1-4Aa)b. (4.25) 

In view of the estimate h2 > a we may write (1 -4h2)i = ib, b real, and then obtain the 
two independent solutions for the differential equation (4.23) in the form 

t-itTib = t-iexp(Tiblnt), (4.26) 

or when combining real and imaginary parts accordingly 

(4.27) 

Both solutions die out as t + m,proving stability of the restricted perturbation to 
any initial perturbation in Zi or h. 

The analysis of the linear stability of the parabolic-cap and the M-wave solutions 
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becomes much more difficult when the spread g is also perturbed. We have made 
attempts to investigate this more general case but were essentially unsuccessful in 
reaching convincing conclusions. The eigenvalue problems corresponding to (4.3) and 
(4.19) no longer permit separable solutions. This prevented us from making exact 
deductions. 

Nevertheless, while the above analysis is not conclusive with regard to the 
asymptotic behaviour of the profile starting from an arbitrary initial shape, it is still 
a useful one as i t  demonstrates stability of the parabolic-cap and the M-wave 
solutions to a fairly large class of perturbations. It gives us some support to suggest 
that numerical schemes ought to reproduce both types of similarity solutions. 

5. Numerical solutions and comparisons with experiments 
The governing depth-averaged equations (2.27) for conservation of mass and linear 
momentum were solved numerically using finite differencing for several initial 
conditions and parameter values. Although these equations bear a superficial 
resemblance to the nonlinear shallow-water wave equations and might be expected 
to be fairly innocuous, their numerical integration in fact turned out to be quite 
troublesome. This was due to several reasons. When a pile of granular material is 
released from rest on a slope, often the material near the rear tends initially to move 
up the slope. One must be careful to use appropriate upwinding in an Eulerian finite- 
difference discretization to avoid numerical instabilities. Unlike the analogous water- 
wave problem, the material is in contact with the bed over a small portion of the bed, 
and the depth is zero elsewhere. The flow of a granular mass can be regarded as a 
moving interface and i t  embodies all the associated difficulties of such problems. The 
M-wave similarity solutions contain discontinuities in both velocity and depth at the 
front and rear of the granular pile ; these discontinuities cause significant difficulties 
in finite-difference computations. 

Our first computations were made using Eulerian approaches. While they were 
able to reproduce the M-wave analytical solutions quite well, thus giving us some 
initial confidence in these numerical schemes, it was subsequently found that 
virtually any initial profile tended to evolve into the M-wave similarity solution. 
Since the laboratory experiments of Huber (1980) and more recent tests of Hutter 
et al. (1988, and paper in preparation) do not show convincing evidence of such trends, 
we now regard these numerical results for initial conditions other than the M-wave 
as spurious. An alternative Lagrangian scheme was then attempted. It was found to 
be simple and efficient and able to accurately predict the observed experimental 
behaviour. Prior to describing in detail the numerical approaches and results, we give 
a brief description of experimental work which is used as a comparison. 

5.1. Laboratory experiments 
Laboratory experiments involving the motion of gravel released from rest on a rough 
inclined bed were conducted by Huber (1980). A finite mass of gravel having a 
prescribed standard distribution of particle diameters with a mean diameter of 
2.54 ern was deposited in a triangular shaped space behind a gate on the top of a 
plane chute of which the inclination angle was varied. The 50 cm wide chute bottom 
was made of a painted plywood board; the glass sidewalls of the chute permitted 
photographic recording of the geometry of the gravel mass during motion. I n  a 
typical experiment the gate was suddenly opened by rotating it away from the 
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FIGURE 7. Sequence of photographs of a finite mass of gravel moving down an inclined plane taken 
from experiment No. 106b of A. Huber (previously unpublished). The total mass of the gravel is 
80 kg, the mean diameter of the grains 2.54 cm, the inclination angle { = 32'. Times (in s) when the 
photos are taken are indicated in the figure. 

gravel, thereby setting the gravel in motion. Cine-films were taken at intervals of 
approximately 0.12s between frames. Figure 7 shows a sequence of eleven such 
snapshots covering an experimental time of 1.26 s. It is seen that the gravel mass 
spreads quickly and approaches a long and thin layer with a depth of one of two 
particles after less than 1 s. The continuum approximation is certainly not satisfied 
for t > 1 s, and it may be doubtful even for t = 0.88 or t = 0.714 s. 
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Huber in his experiments did not record the bed friction angle 8. This was 
measured by us using the same plywood board and gravel with the same particle 
diameter distribution and it was found that 6 x 22". These experiments were done in 
a quasi-static fashion by slowly increasing the angle of inclination of the plywood 
board and determining that angle which set the gravel mass in motion. It is known 
that the bed friction angles determined in this way are somewhat larger than those 
determined by much more difficult dynamic experiments. 

Another parameter required for the theoretical comparisons is the dynamic 
internal friction angle. Hungr &, Morgenstern (1984 b )  found in their annular-shear- 
cell experiments that  the dynamic friction angle was about 4' less than the angle of 
repose of the granular material. The material used in Huber's experiment No. 106b 
had an angle of repose similar to that in the experiments of Hungr & Morgenstern 
and we have therefore used a value for q5 of 29" in the computations described in the 
subsequent sections. 

5.2.  Eulerian approach 
Several implicit and explicit schemes were attempted with varying degrees of 
apparent success. The 'upwind flux correction method ' proposed by McDonald & 
Ambrosiario (1984) to treat flow discontinuities in hyperbolic systems was one of the 
more trouble-free approaches. However, the method that appeared to work the best 
of those attempted and the one to  be described here is an adaptation of MacCormack's 
(1978) two-step explicit finite-difference scheme. In  the first step of the approach one 
predicts from the known solution a t  time t = nAt, the values of h and u at the new 
time t = (n+ 1)At by using one-sided (upwind) differences to approximate the first 
derivatives, In  the .second step, corrections are made to  the predicted values using 
opposite one-sided differences for the first derivatives. The method is second-order 
accurate and stable for appropriate time steps. 

To further dampen the dispersive ripples that develop near sharp gradients we 
have introduced an artificial viscosity p in both the mass and linear momentum 
equations used to determine h and u (see, for example, Hyman 1976, p. 69). 

For the first step the finite-difference forms of the predictions for h and u a t  the 
new time step are 

At At 
2 6 2  Ax2 ha'l = h; - - ( u;+l h;+, - u;- 1 &) + /!A __ (@+, - 2h; + (5.1) 

At 
Ax2 

+p-(u;+1-2u;+u;-1),  

where S = sin 3, TC = tan 6 cos 5, P = ekaCtpass cos c. 
In  the second step the corrections for h and u a t  the new time are given by 

At 
2Ax 
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FIQURE 8. Development of M-wave with time. Comparison of analytical similarity solution with 
results of numerical computations using MacCormack’s explicit finite-difference scheme ; 6 = Z O O ,  

5 = 4 5 O ,  6 = 0.05, At = 0.01, Ax = 0.05, /I = 0.01 : -, analytical solution; ......, numerical 
computations. 
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FIGURE 9. Results obtained from MacCormaok's explicit Eulerian finite-difference scheme for the 
evolution of the motion of a finite mass of granular material starting from rest on a bed with 
inclination angle 5 = 32", and different bed friction angles; (a) 6 = 22O, (b)  16", (c) 10". E = 0.3218. 
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lo-' 5 1 oo 5 10' 

Dimensionless time, I 

FIGURE 10. Growth of length of avalanche with time; bed slope 5 = 32O, e = 0.3218. 0 , 6  = 22"; A, 
8 = 16". Avalanche lengths taken from numerical calculations (Eulerian scheme) shown in figure 9. 

+At(#-  sgn (u,nfI)TC) --- At (E-G) 
2 Ax 

Values of p of about 0.01 were found to be sufficient to keep the ripples near the 
'discontinuities ' small without significantly smearing out the discontinuity itself. 

Figures 8-10 show some results of the numerical computations using this 
approach. Figure 8 displays the development of an M-wave a t  various non- 
dimensional times t. The analytical similarity solutions given by (3.25) and (3.35) 
were used as initial conditions for u and h at time t = 1 and the centre of mass of the 
pile was located at  x = 2. The numerical results are compared with the similarity 
solution at later times. Aside from the dispersive ripples at  the leading-edge 
discontinuity the numerical results agree well with the analytical solution. These 
numerical calculations were performed by taking the artificial viscosity ,u = 0.01 ; a 
somewhat larger value of p eliminates the wiggles. This comparison gives some idea 
of the accuracy of the numerical scheme. Furthermore, the good agreement between 
the similarity solution and the numerical computations is in accord with the analysis 
of 84.2 which suggested that the M-wave solution is stable when subjected to small 
perturbations. 

Figure 9 shows a series of calculations all at  the same bed slope 6 = 32' but for 
different bed friction angles of loo, 16' and 22'. As expected, decreasing the bed 
friction angle increases the acceleration of the pile down the slope but the rate of 
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FIGURE 1 1 .  Leading and trailing edges of a gravel avalanche as they evolve in time. 
Experimental results are taken from A. Huber's experiments No. 100b. 

spread of the length of the pile remains much the same. The granular material started 
from rest at time t = 0 with an unsymmetrical shape given by 

1 E = 0.3218 

and h(z)  = 0.879897sin[n(z-O0.6)]-O.3sin[2n(z-0.6)], for 0.6 < z < 1.6.j 

This profile was chosen for comparison with the laboratory experiments described 
above and is a close approximation to the experimental depth profile of the second 
photograph of figure 7 and smooths the sharp corners seen in the first photographs. 
The initial profile is seen to evolve into the M-wave shape. 

Finally, figure 10 shows the rate of growth of the length of the avalanche as its 
shape evolves towards the M-wave shape. At the larger times the lower bound for the 
length, corresponding to the distance from front to rear crests, as well as upper bound 
for the length, are shown. The half-length g ( t )  from the M-wave similarity solution 
of $3.2 was found to grow as d. As may be seen, the growth rate predicted by the 
numerical computations as the profile approached the M-wave shape shows the same 
tf dependence. 

Although it is hard to say decisively, the depth profiles from the laboratory 
experiments shown in figure 7 do not appear to be evolving into an M-wave shape. 
Furthermore, figure 11 shows that this numerical scheme gives poor predictions of 
the leading and trailing edges of the experimental gravel avalanche deduced from 
Huber's experiment No. 106b. Both these results made us question the validity of 
this numerical approach. After some consideration it was concluded that although 
the M-wave computations were correot the numerical results for more general initial 
profiles were spurious for the following reason. 

(5.5) 
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Mesh cell centres 
i - 1  i i + l  

0 1 2 3  j - 1  j j + l  
n- 1 

Mesh boundary points 

FIGURE 12. Definition of mesh cell notation for Lagrangian numerical scheme. 

The Eulerian scheme made use of a fixed spatial grid which extended upstream and 
downstream of the moving pile. Since the pile spreads as it moves down, the nose and 
tail velocities are respectively higher and lower than the centre-of-mass velocity. In 
addition, the equations of motion (2.27) yield finite velocities upstream and 
downstream of the pile where there is no material and the depth is zero. Thus there 
occur abrupt changes in velocity corresponding to the front and rear of the pile and 
it was thought that these could be handled by the use of an artificial viscosity. In 
the numerical calculations the velocities in the regions outside of that occupied by the 
pile of material begin to affect (diffuse into) the region of the pile itself. This has the 
effect of restraining the spread of the pile and forces i t  to evolve towards the M-wave 
solution. Evidently, once it it close to that shape i t  continues to spread like the M -  
wave, as was found in figure 6. The problem is in the application of the boundary 
conditions. The use of the artificial viscosity which appeared to work well for the M -  
wave calculations has a small but cumulative effect which leads to spurious results 
for the evolution from initial profiles that are closer to the parabolic-cap shape. An 
alternative Lagrangian numerical scheme was then devised as described below. 

5.3. Lagrangian approach 
After experiencing the above-mentioned difficulties with the more commonly used 
Eulerian approach it was realized that a Lagrangian scheme is a mare natural choice 
for the present problem which involves the determination of the position of the 
moving air-granular material interface. To formulate such an approach we divide 
the granular mass into a number of cells as shown on the depth profile in figure 12. 
The mesh cell boundaries are advected with the particles. We now set up an index 
notation in which i corresponds to the mesh cell centres and j corresponds to the 
mesh cell boundary points just to the left of i. The cell boundary points are defined 
at times n -  1 and are designated as x?-l; the velocities of the cell boundary points 
are defined at  the half-time steps and are written as u;-i. 

Integrating the depth-averaged mass conservation equation, (2.27 a), between xj 
and x,+~ yields after some manipulation 

where 

ALi hi = const. w ALi hi, 

A& = Xj+I - xj, 

J sj 

Let us assume that we know uY-4, xy-l, and h,"-l. At time t = 0 we identify-thern with 
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FIGURE 13. Lagrangian Galcultions for avalanche profile (dimensionless 5 plotted against 
dimensionless height h) shown for six different dimensionless times. The profile tends to become 
more parabolic with increasing time. The inset shows the front-, middle- and rear-end velocities. 
Circles indicate computed values, crosses are deduced from Huber's experiment 106b. Com- 
putations were done for [ = 3 2 O ,  g5 = 2 9 O ,  6 = 22" and E = 0.3218. 

the initial values. With these we obtain the new positions of the cell boundaries x? 
after an elapsed time At, thus 

~7 = x;--L+~jR-iAt. (5.9) 

We then determine the depth at  the cell centres i using (5.6) and (5.7) ; thus 

(5.10) 

Finally we solve for the velocities a t  the cell boundaries using the depth-averaged 
momentum equation (2.27b) 

where xi n - -  - :(q + xi",,,. (5.12) 

For the calculation of points other than the leading- and trailing-edge endpoints 
we have added an artificial viscosity term pa2u/i3x2 to the right-hand side of (5.11) 
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FIGURE 14. Growth of length of avalanche with time. Computations were done using Lagrangan 
scheme for 6 = 32', $ = 29', 6 = 22' and E = 0.3218. Experimental points are taken from A. 
Huber's data for experiment No. 106b. 

to dampen the numerical ripples that tend to develop under some conditions. Values 
for the artificial viscosity p of between 0.01 and 0.03 proved to be adequate. 

Predictions of Huber's experiment No. 106b using the Lagrangian scheme are 
shown in figures 11, 13, and 14. They are based upon the initial depth profile given 
by (5.5), zero depths at  the front and rear margins, the measured, quasi-static bed 
friction angle 6 = 22' and the estimated dynamic internal friction angle q5 = 29'. 
Figure 13 shows the profile shape at six different (dimensionless) times and as an 
inset the front, middle point and rear end velocities. Full and open circles mark 
computed values, crosses are deduced from Huber's experiments. Unfortunately 
these do not cover the entire range of the computed values. 

It may be seen in figure 11 that the predicted position of the front is slightly behind 
the experimental values. For comparison we have also shown in figure 11 the results 
of calculations for slightly lower friction angles of 8 = 20' and q5 = 25" to account for 
a dynamic bed friction angle lower than the measured quasi-static value and for the 
uncertainty in the value of the internal friction angle that was not measured. The 
agreement is seen to be slightly better. However, it should be noted that the gravel 
layer was only a few particles deep at the later times in the experiments. The 
continuum assumption is not accurate in such instances and it is likely that 
individual particles rolled along the bed and over each other instead of behaving aa 
a Coulomb continuum. In this regard we mention that extensions of the present 
analysis for flows down curved beds shows very good agreement with more recent 
experiments of Hutter, et al. (1988) using relatively finer particles for which the 
continuum approximation is more appropriate. 
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Last, we have plotted in figure 14 on doubly logarithmic scales the dimensionless 
avalanche length against dimensionless time. Experimental and computational 
results again match reasonably well. Computations corroborate the asymptotic 
parabolic-cap similarity solution behaviour (corresponding to  a slope of 45") 
sufficiently accurately and the experimental points indicate that this asymptotic 
bchaviour is the one that is approached. 

Given the above uncertainties paired with the inaccuracies in the definition of 
basal geometries and roughness one always has to accept in the geophysical context, 
we regard our model equations as suitable for the prediction of motion of a finite 
mass of a granular material subject to gravity forces. I ts  application to curved beds 
that merge into a horizontal plane will yield information regarding the travelling 
distance and the final spread of avalanches in their runout zones. 

6. Concluding remarks 
A mathematical model which describes the motion and the spreading of a finite mass 
of fluid-like granular material along a rough plane bed was presented. Evolution 
equations were derived from the balance laws of mass and momentum by depth 
averaging these equations. They constitute nonlinear partial differential equations 
for the height and the transversely averaged streamwise velocity distributions of the 
finite gravel mass. Two similarity solutions of these equations, a parabolic cap and 
an M-wave, were found; each has a different asymptotic behaviour for large time. A 
linear small-amplitude perturbation analysis and numerical finite-difference com- 
putations indicate that the large-time evolution of any finite mass of gravel starting 
from a state of rest and moving down an inclined plane tends to  approach the 
parabolic-cap behaviour. Comparison of numerically predicted motions of a finite 
granular mass with laboratory experiments of rockslides showed good qualitative 
and fair quantitative agreement of the propagation of the front and rear margins of 
the avalanche as well as the evolution of the shape of the depth profile. Considerable 
difficulties were experienced in the development of a reliable numerical approach to 
integrate the depth-averaged equations of motion. While Eulerian schemes based 
upon MacCormack's (1978) method were able to  accurately reproduce the M-wave 
similarity solution they gave unreliable results for more general initial conditions. A 
Lagrangian approach in which the computational grid was advected with the 
material was found to be the most simple, efficient, and reliable of the schemes 
attempted. 

By depth averaging the equations of motion we have achieved very significant 
simplifications, but at the expense of losing many of the details of the flow field. The 
strongly fluidized, high shear rate, lower density basal layer is smeared out. One 
might consider an extension of the present work involving a detailed analysis that  
accounts for individual particle interactions, and variations of bulk density, granular 
temperature, etc. For such an analysis the bed boundary conditions are more 
numerous and much more complicated. While one anticipates variations in the ratio 
of shear to normal stress with variations in normal stress, density, etc. one also 
expects from the experimental evidence that they would a t  most be second-order 
effects. 

Finally, we note that our model is suitable not only for rockfalls, landslides and 
sturzstroms but may equally be used also for snow avalanches if these do not develop 
into powder snow avalanches. The theory of such so-called flow avalanches is due to 
Voellmy (1955) and Salm (1966, 1968) and is based largely on hydraulics concepts; 
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however, we know of no computational model that could have been applied to a finite 
mass of snow. Our model is a first step towards a more complete analysis of these 
flows. Besides the application to curved beds which we regard as our next step of 
confirmation (Savage & Hutter 1988 and Hutter, Pluss & Savage, in preparation) 
these models would have to incorporate snow entrainment from below. 
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